RAPID COMMUNICATIONS

Small numerators canceling small denominators: Is Dyson’s hierarchical model solvable?
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We present an analytical method to solve Dyson’s hierarchical model, involving the scaling variables near
the high-temperature fixed point. The procedure seems plagued by small denominators as in perturbative
expansions near integrable systems in Hamiltonian mechanics. However, in 36 cases considered, a zero de-
nominator always comes with a zero numerator. We conjecture that these cancellations occur in general,
allowing the application of the analytical method and suggesting that the model has remarkable features
reminiscent of the integrable systems.
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In many physical problems involving nonlinear flows, a Landau-Ginzburg typein the symmetric phase. In other
common strategy consists in constructing a system of coomwords, we would have an analytical solution. More gener-
dinates where the flow becomes linear. The action-anglelly, these remarkable cancellations suggest that either the
variables in Hamiltonian mechanics provide well-known ex-model considered is as distinguished as the integrable sys-
amples of such a procedure. Whenever the angle variabl@ems of classical mechanics or that there exists a general
can be constructed, they evolve linearly with time and exmechanism that allows us to circumvent the small denomi-
pressing the original variables in terms of the new onegator problem for RG flows.
solves completely the original problem. The problems for pyring the last decades, the RG method has been success-
which well-defined angle-action varigb_les can be const_ructeqmy applied to many important problems in field theory and
(e.g., Kepler's problem or the free rigid bodgre very dis-  gtatistical mechanics: the critical behavior of ferromagnets
tinguished and called integrable systems. A large number of,j ¢\ nerconductors, the confinement of quarks or spontane-

humerical experimer!ts has led us.to belieyg that ?n a generi8us symmetry breaking in elementary particle models. How-
way, small perturbations destroy integrability. This point of ever, its practical implementation is still a formidable enter-

view was first inferred by Poincarevho pointed out the rise. Typically, expansions are often available near fixed
existence of small denominators in the canonical transformal’ o ' YPIcaly, €xp
oints, but not to orders large enough to allow one to ex-

tion designed to eliminate the angle dependence of a peF2 late b fixed poi Unf v th lculati
turbed Hamiltonian. trapolate between fixed points. Unfortunately, the calculation

In this Rapid Communication, we discuss the question off the thermodynamical quantities beyond an order of mag-
small denominators for renormalization groGRG) flows. nitude estlmayon, requires a calculation of the flows in
The variables which play the role of angle variables are th€rossover regions. One has then to rely on Monte Carlo
scaling variables introduced by Wegnil]. Near a fixed simulations to achieve this goal. One also needs to select a
point, the RG flows can be linearized. The problem of ex-small set of interactions which closes reasonably well under
pressing the physical quantities in terms of variables whiclRG transformation near both fixed points. Interesting ex-
transform as in the linear approximation when the nonlineaemples of such lattice Monte Carlo calculations are given in
terms are taken into account, is analogous to removing thRef. [4] for scalar theory and Ref5] for gauge theories.
angle dependence of a perturbed Hamiltonian. If the task can In order to get analytical results, further approximations
be carried through, one obtains analytical expressions for thare needed. One possibility consists of using hierarchical ap-
RG flows. However, as we will show, small denominatorsproximations such as the one derived by Wilson in R&¥,
appear. Does this mean that, as in Hamiltonian mechanics, ighich resulted in the “approximate recursion formula.” In
generic situations the construction will fail? this approximation, only the local interactions get renormal-

Surprisingly, we found in a numerical calculation per-ized and the flow can be calculated from a simple integral
formed with Dyson’s hierarchical modg2,3], that zero de-  formula. Retracing Wilson’s construction from the begin-
nominators were systematically canceled by zero numeraing, one can restore the other renormalizations perturba-
tors. Our first study involved calculations up to orgéf and tively. In order to perform this task, one would like to have a
yzyil, they; being the scaling variables indexed in terms ofclosed form solution in the hierarchical approximation. In
decreasing eigenvalues. We have then completed a systewrder to achieve this goal, we have propo§éfto use the
atic study of all the possible zero denominators up to ordeFourier representation of the integral formula and to con-
12 in the high-temperature expansion, involving the first 12struct the scaling variables in this basis. In this process, we
scaling variables, and found no exceptions. We conjectur@entified the existence of small denominators possibly ruin-
that these cancellations hold to all order in the high-ing the whole approach. This problem can be avoided in
temperature expansion. If this conjecture is true, a simplapecial circumstances, for instance, for flows starting exactly
algorithm presented below can be applied to obtain the thermlong the unstable direction of a nontrivial fixed point. With
modynamical quantities such as the magnetic susceptibilitthis restriction, we found7] expansions with overlapping
for an arbitrary local measurdor instance, of the Ising or domains of convergence in the crossover region.
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In the following, we discuss the problem of small denomi- mation. Note that the form of the eigenvectors guarantees
nators in the construction of the scaling variables near théhat h,, is also of orderp'. Under this linear change of
high-temperaturgHT) fixed point of Dyson’s hierarchical coordinatesI'%" transforms like a tensor and we denote its
model. The treatment of this model is mathematically similamew values byA“”. More details are given Ref7], where
to the one of the approximate recursion formula. Howeverg|| the quantities related to the HT fixed point are dressed
there exists a large literature on Dyson’s mod+10], the  ith a “tilde” omitted here . In summary, the RG flows in

nontrivial fixed point is known very precisefl1], and the the new coordinates can be written as
HT expansion is studied to a very large ordi&g].

For a description of this model as a spin model, we refer Nyhni+ AP, hy
to Refs[13,14], while the details of the derivation of the RG Nny1= op’ qu : . (6)
flows as expressed below can be found in IREf. To make 1+240°Mn p+ 460 pMn g

a long story short, all the information regarding the local

interactions aften RG transformations is encoded in a func- We now Express thi,, in terms of the scaling varlablgs
tion R,(k)=1+a, k+a, k*+ ... . The logarithm of this Yoir - ,yn,|maxwh|ch transform under a RG transformation

function generates the connected zero-momentum Green& Yn+1i=A@)Yn,i- If we can construct functionk, andy,

functions at finite volume. The recursion formula reads ~ such thath,,=h;(y,) andy, =y(hn), then we get a com-
plete analytical expression df,, (which contains all the
( \/Ek)
R,

2 thermodynamical quantitigsn terms ofhg, (which depends
2

1 42

Rn+1(k):Cn+leXr{ T (D on the initial energy densily

We fix the normalization constaft, so thatR,(0)=1. We hn i =hi[NY1(ho) A zyYa(ho), . .. ]. (7)

use the parametrizatioz=21~2P, which implies that a free o _ _
massless field scales in the same way as in a usuaihe feasibility of this approach is demonstrated for a one-

D-dimensional theory. In this formulation, the temperaturedimensional example in Ref15].

dependence has been absorbed in the inRigk). For an We now discuss the construction of the. We use the
Ising measureR,(k) = cos(/Bk), while in general, we have €XPansion

to numerically integrate the Fourier transform of the local

measure to determine the coefficientsRy{k) expanded in h=y,+ 2, S| ___y‘llyiz2 e (8)
terms ofk. In generala,  is of orderp' in the HT expan- FRPIRRR
sion.

where the sums over thiés run from 0 to infinity in each
variable with at least two nonzero indices. In the following,
we use the notationfor (iq,i,,...). It isimplicit that there
are only a finite number of nonzero indices. Plugging the

In the HT phase, polynomial truncations of ordgg, in
k? provide rapidly converging approximatiofis3]. The RG
flows can be expressed in terms of the quadratic map

Up | expansion into Eq(6), and requiring that the one step ad-
an+1,|=u =, (2)  vance is obtained by rescaling the scaling variables by their
no associated eigenvalue, we obtain
with
_ Ny i
Uno=1"5"ay 4an o, (©)) S~ 1—[ i . ©)
AT =N
and ( mo (l))
—12)# T 2+ v)]! with
PPV o't . Ukt ) LU
v (utrv—0)!(20)! .
N, = AP%y isqk—si 1] Am2A%Ps )
for u+v=0 and zero otherwise. We use “relativistic” no- DAL | T TRk PSS BT T0 Bek
tations. Repeated indices mean summation. The greek indi- _
cesp andv go from O tol .y, While latin indicesi, j go - > . SI,jH )\](%qusp,ksq,r- (10)

from 1 tol pax- jtktr=i m

The diagonalization of the linear RG transformation near ) o ] )
the HT fixed point is quite simple because the associatefOr @ given set of indices we introduce the notation
matrixMiEZI‘,o' is of the upper triangular form. From Eq.

(4), one finds the spectrum Iq(i)zzrn: i ymd. (12)

A(r)ZZ(C/‘]-)r, (5)

One sees thaly is the degree of the associated monomial
in agreement with Ref9]. Using the matrix of right eigen- andZz, its order in the HT expansiofsincey, is also of order
vectors,M i =\ (¥ , we introduce new coordinates such g'). Given that all the indices are positive and that at least
thata, =y h,,. This diagonalizes the linear RG transfor- one index is not zero, one can see thatj#k=i then
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Tq(j) <Zy(i) andZy(k) <Zy(i). Consequently, Eq10) pro- 10| ' ' '.‘.‘._;..a ]
vides a solution order by order iy, or in Z; (since the rhs is ‘._.‘_‘_.‘.g-..
always of lower ordérassuming that the small denominator 0 asma I
problem can be avoided. o .10l Precision |
H H H _»1-2D H =
t Ugng tr}g)parametnzr?tmn—z , the zero denomina- =" a0l 20 |
ors in Eq.(9) appear when o 20
o -30 |
—*— 40
D-1(D+2)=DZ,— (D+2)Z;. (12) = o0l ]
k 4

If D andD+2 have no common factors, this equation has -50 5 10 15 20

nontrivial solutions for indices such thdy=(2+D)qg+1,

; AP i
for q a strictly positive integer antl such thatZ;=Dq+I.

Sincel is the index appearing in E@8), it is also a strictly FIG. 1. Logo(|N3; ) vsj for various precisions.

positive integer. IfD and D+2 have common factors, we

can proceed in the same way but with these common factorsign sequence is«,+,—,0,—,+,—,+,—,+,+,—,...)

removed from botiD andD + 2. excluding the possibility that the zero occurs only when the
We have investigated numerically the well-studied casesign changes.

D=3 with a polynomial truncatiot,,,=25. We have first In Fig. 2, WeshowNHlD calculated with a precisioR

considered the case whenedepends only on the two lead- =20. One sees that té,q 1.5+ 1,0 are more than 20 orders
ing variablesy; andy,. This restriction is self-consistent of magnitude smaller than the naive interpolation. We have
since if we start for instance with;=0, the multiplicative  checked in each of these cases that the small value drops by
renormalization of the Scaling variables Implles that this CON+ten orders of magnitude each time the precision is increased,
dition stays valid aftem iterations. Sincds=is=...=0, just as in Fig. 1. Similar results were obtained for the
we will use notations such &, i, or hi(y1,y2). In addi- N, , s, , for g up to 4. In summary, for each zero denomi-
tion, we have concentrated our attention on the large ordenator considered, we found a zero numerator. We thus con-
behavior in the leading variablg, and calculated the first jecture that all numerators corresponding to zero denomina-
order corrections in the subleading variaple If i,=0, we tors are zero. If this conjecture is correct, thsg;
have the following sets of small denominatorg=5q+1  corresponding to nonzero denominators are calculable from
andl=2q+1. Ifi,=1, we have;=5q andl=2g+2. We Eq. (10 and those corresponding to zero denominators are
have calculated the numerators corresponding to these zewmdetermined. The calculations performed above have been
denominators fog=1, 2, 3, and 4. done with these coefficients treated as undetermined. The
We have checked our calculation of thewith two dif-  figures have been drawn with these coefficients set to zero.
ferent methods. First we have considered a configuratiofhis choice is not essential; we have considered other
hn1=hi(y1,y») for particular values of/; andy, and then choices where the undetermined coefficients have been set to
calculated the one step backward configuratibp i values of the same order as the coefficients above and below
= h|()\1_1)’1,)\2_1y2)- We then calculated the one step for- (ini;) and reached identical conclusions. This is a nontrivial
ward using thes@,_, and the exact formulés). Compari-  Statement. For instance, the undetermined coefficiggh
son between the twb,,, for values ofy, andy, varying appears explicitly in the numerator of the equationgipy;
between 0.1 and 0.001 and for various truncations in thé&owever, it is multiplied by a very small number which
power ofy,; andy, considered, showed errors scaling like drops when the precisioR is increased. _
the powers neglected with coefficients compatible with the One may object that the mechanism might not work if
order of magnitude of the coefficients involved in the expanimore scaling variables are involved. We have thus conducted
sion. Second, we used the expressiaiih,) calculated in @ Systematic study of all thle, up to order 12 in the high-
Ref. [7] up to order 11 inB and checkedy;[h/(y1,Y2)]
=y, with errors ranging between 1f* and 10 '° for the

E o . 10| Value of I i
various coefficients of the higher order terms. w1

In Fig. 1 we show the absolute value Nf; ;. The cal- [ —*—2
culations have been performed with different arithmetic pre- — O = ]
cisions. We have usedATHEMATICA 4.0 with MaxPrecision = -
and MinPrecisionboth set to the same numerical valBg Zo -10f :i 1
which approximately represents the number of significant o) [ —e—5
digits in the calculation. We have considered the caRes S Lol 57 ]
=20, 30, and 40. The graphs shoWNg o is more than 20 [ —e—8
orders of magnitude smaller than its peers when the precision _I*_g . . . .
P=20 and then drops by ten orders of magnitude each time -30 0 5 10 15 20 25
the precision is increased by 10, while all the other values i
stay stable. This is a strong evidence fbys ;=0. Figure 1
does not provide the sign ®3; . Starting withj=3, the FIG. 2. Logo(|N;jdl) vsj for1=1,...9.
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temperature expansion. The study involves the first 12 scathe Gaussian fixed poin9] is )\J:ZC*J'. There are many
ing variables and 2568 linear equations with 32 zero denomizero denominators in integer dimensions, e)g.=\3 for
nators. In each of the 32 caséscluding the four cases D=3. If the numerators are not zero, one can “repdit]
already considergdwe found a clear indication for a zero the situation by considering-dependent coefficients. This
numerator as before. excludes a solution of the form of Eq7) but it generates

We have checked that the individual terms in the zerdogarithmic corrections that are necessary. These can even be
numerators were not zero. The fact that we were able t@bserved in the large order of the HT temperature expansion
obtain very precise cancellations without any fine-tuningin Ref. [17]. Note that using a slightly different value &f
suggests the existence of closed form formulas or of a symMight be an efficient way to deal with the small denomina-
metry forbidding these terms. More generally, the equallytors. _ )
spaced spectrurfon a log scalg the number of terms at a In concluspn, we have found remarkable cancellations of
given levelm (the order in HT expansiorequal to the num- small denominators by small numerators. These canpella—
ber of partitions ofm [7], and the existence of “nested” tions have been checked.systematlcally up to qrder_12 |n.the
ambiguities are somehow reminiscent of string theory. Ahigh-temperature expansion and for the equations involving
possible starting point to discover these hypothetical symmeRnly the leading scaling variable up to order 23. If these
tries would be to exploit the fact that since, for instange, ca_ncellatlons occur in gen_eral, itis p_qssmle to calcula’Fe ana-
andy?® transform the same way under a RG transformation/Ytically the thermodynamical quantities of Dyson’s hierar-
there exist ambiguities in the constructiontgfin terms of ~ chical model in the HT phase using EQLO). Our results.
the scaling variables. suggest that thIS' modellhas' features analogous to the inte-

We should say a few words about the small denominatorgrable systems in Hamiltonian mechanics and that closed
near other fixed points. The spectrum of the linearized RGO'M expressions for théy could be found. As such, the
transformation near the nontrivial fixed poiftl] can be Model would stand out as a first approximation to be used in
calculated numerically16]. Investigating the small denomi- situations 'Where the conventional perturbative expansions
nators of the form\k=\"_for the first 20 eigenvalues and for @€ Nnot reliable.

powers not larger than 100. The best solution we found was This research was supported in part by the Department of
A3=\, with two parts in 1000. A more detailed study is Energy under Contract No. FG02-91ER40664. Y.M. thanks
necessary to decide if the rate of decay of the coefficients ithe Aspen Center for Physics for its hospitality in Summer

sufficient to take care of the smaller denominator that will2000 while this work was in progress and for a conversation
appear at larger orders. On the other hand, the spectrum titere with L. Kadanoff.
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