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Small numerators canceling small denominators: Is Dyson’s hierarchical model solvable?
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~Received 7 August 2000; published 9 April 2001!

We present an analytical method to solve Dyson’s hierarchical model, involving the scaling variables near
the high-temperature fixed point. The procedure seems plagued by small denominators as in perturbative
expansions near integrable systems in Hamiltonian mechanics. However, in 36 cases considered, a zero de-
nominator always comes with a zero numerator. We conjecture that these cancellations occur in general,
allowing the application of the analytical method and suggesting that the model has remarkable features
reminiscent of the integrable systems.
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In many physical problems involving nonlinear flows,
common strategy consists in constructing a system of c
dinates where the flow becomes linear. The action-an
variables in Hamiltonian mechanics provide well-known e
amples of such a procedure. Whenever the angle varia
can be constructed, they evolve linearly with time and
pressing the original variables in terms of the new on
solves completely the original problem. The problems
which well-defined angle-action variables can be construc
~e.g., Kepler’s problem or the free rigid body! are very dis-
tinguished and called integrable systems. A large numbe
numerical experiments has led us to believe that in a gen
way, small perturbations destroy integrability. This point
view was first inferred by Poincare´, who pointed out the
existence of small denominators in the canonical transfor
tion designed to eliminate the angle dependence of a
turbed Hamiltonian.

In this Rapid Communication, we discuss the question
small denominators for renormalization group~RG! flows.
The variables which play the role of angle variables are
scaling variables introduced by Wegner@1#. Near a fixed
point, the RG flows can be linearized. The problem of e
pressing the physical quantities in terms of variables wh
transform as in the linear approximation when the nonlin
terms are taken into account, is analogous to removing
angle dependence of a perturbed Hamiltonian. If the task
be carried through, one obtains analytical expressions for
RG flows. However, as we will show, small denominato
appear. Does this mean that, as in Hamiltonian mechanic
generic situations the construction will fail?

Surprisingly, we found in a numerical calculation pe
formed with Dyson’s hierarchical model@2,3#, that zero de-
nominators were systematically canceled by zero num
tors. Our first study involved calculations up to ordery1

23 and
y2y1

21, theyi being the scaling variables indexed in terms
decreasing eigenvalues. We have then completed a sys
atic study of all the possible zero denominators up to or
12 in the high-temperature expansion, involving the first
scaling variables, and found no exceptions. We conjec
that these cancellations hold to all order in the hig
temperature expansion. If this conjecture is true, a sim
algorithm presented below can be applied to obtain the t
modynamical quantities such as the magnetic susceptib
for an arbitrary local measure~for instance, of the Ising or
1063-651X/2001/63~5!/055101~4!/$20.00 63 0551
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Landau-Ginzburg type! in the symmetric phase. In othe
words, we would have an analytical solution. More gen
ally, these remarkable cancellations suggest that either
model considered is as distinguished as the integrable
tems of classical mechanics or that there exists a gen
mechanism that allows us to circumvent the small deno
nator problem for RG flows.

During the last decades, the RG method has been succ
fully applied to many important problems in field theory an
statistical mechanics: the critical behavior of ferromagn
and superconductors, the confinement of quarks or spont
ous symmetry breaking in elementary particle models. Ho
ever, its practical implementation is still a formidable ente
prise. Typically, expansions are often available near fix
points, but not to orders large enough to allow one to
trapolate between fixed points. Unfortunately, the calculat
of the thermodynamical quantities beyond an order of m
nitude estimation, requires a calculation of the flows
crossover regions. One has then to rely on Monte Ca
simulations to achieve this goal. One also needs to sele
small set of interactions which closes reasonably well un
RG transformation near both fixed points. Interesting e
amples of such lattice Monte Carlo calculations are given
Ref. @4# for scalar theory and Ref.@5# for gauge theories.

In order to get analytical results, further approximatio
are needed. One possibility consists of using hierarchical
proximations such as the one derived by Wilson in Ref.@6#,
which resulted in the ‘‘approximate recursion formula.’’ I
this approximation, only the local interactions get renorm
ized and the flow can be calculated from a simple integ
formula. Retracing Wilson’s construction from the begi
ning, one can restore the other renormalizations pertu
tively. In order to perform this task, one would like to have
closed form solution in the hierarchical approximation.
order to achieve this goal, we have proposed@7# to use the
Fourier representation of the integral formula and to co
struct the scaling variables in this basis. In this process,
identified the existence of small denominators possibly ru
ing the whole approach. This problem can be avoided
special circumstances, for instance, for flows starting exa
along the unstable direction of a nontrivial fixed point. Wi
this restriction, we found@7# expansions with overlapping
domains of convergence in the crossover region.
©2001 The American Physical Society01-1
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In the following, we discuss the problem of small denom
nators in the construction of the scaling variables near
high-temperature~HT! fixed point of Dyson’s hierarchica
model. The treatment of this model is mathematically sim
to the one of the approximate recursion formula. Howev
there exists a large literature on Dyson’s model@8–10#, the
nontrivial fixed point is known very precisely@11#, and the
HT expansion is studied to a very large order@12#.

For a description of this model as a spin model, we re
to Refs.@13,14#, while the details of the derivation of the RG
flows as expressed below can be found in Ref.@7#. To make
a long story short, all the information regarding the loc
interactions aftern RG transformations is encoded in a fun
tion Rn(k)511an,1k

21an,2k
41 . . . . The logarithm of this

function generates the connected zero-momentum Gre
functions at finite volume. The recursion formula reads

Rn11~k!5Cn11expF2
1

2

]2

]k2GFRnSAck

2 D G2

. ~1!

We fix the normalization constantCn so thatRn(0)51. We
use the parametrizationc52122/D, which implies that a free
massless field scales in the same way as in a u
D-dimensional theory. In this formulation, the temperatu
dependence has been absorbed in the initialR0(k). For an
Ising measure,R0(k)5cos(Abk), while in general, we have
to numerically integrate the Fourier transform of the loc
measure to determine the coefficients ofR0(k) expanded in
terms ofk. In general,an,l is of orderb l in the HT expan-
sion.

In the HT phase, polynomial truncations of orderl max in
k2 provide rapidly converging approximations@13#. The RG
flows can be expressed in terms of the quadratic map

an11,l5
un,l

un,0
, ~2!

with

un,s5Gs
mnan,man,n , ~3!

and

Gs
mn5~c/4!m1n

~21/2!m1n2s@2~m1n!#!

~m1n2s!! ~2s!!
, ~4!

for m1n>s and zero otherwise. We use ‘‘relativistic’’ no
tations. Repeated indices mean summation. The greek
cesm and n go from 0 to l max, while latin indicesi, j go
from 1 to l max.

The diagonalization of the linear RG transformation ne
the HT fixed point is quite simple because the associa
matrix M l

i[2G l
0i is of the upper triangular form. From Eq

~4!, one finds the spectrum

l (r )52~c/4!r , ~5!

in agreement with Ref.@9#. Using the matrix of right eigen-
vectors,M l

ic i
r5l (r )c l

r , we introduce new coordinates suc
that an,l5c l

rhn,r . This diagonalizes the linear RG transfo
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mation. Note that the form of the eigenvectors guarant
that hn,l is also of orderb l . Under this linear change o
coordinates,Gs

mn transforms like a tensor and we denote
new values byDs

mn . More details are given Ref.@7#, where
all the quantities related to the HT fixed point are dress
with a ‘‘tilde’’ omitted here . In summary, the RG flows in
the new coordinates can be written as

hn11,l5
l ( l )hn,l1D l

pqhn,phn,q

112D0
0phn,p1D0

pqhn,phn,q

. ~6!

We now express thehn,l in terms of the scaling variable
yn,1 , . . . ,yn,l max

which transform under a RG transformatio

as yn11,i5l ( i )yn,i . If we can construct functionshl and yl
such thathn,l5hl(yn) andyn,l5yl(hn), then we get a com-
plete analytical expression ofhn,l ~which contains all the
thermodynamical quantities! in terms ofh0,l ~which depends
on the initial energy density!:

hn,l5hl@l (1)
n y1~h0!,l (2)

n y2~h0!, . . . #. ~7!

The feasibility of this approach is demonstrated for a o
dimensional example in Ref.@15#.

We now discuss the construction of thehl . We use the
expansion

hl5yl1 (
i 1 ,i 2 , . . .

sl ,i 1i 2 . . . y1
i 1y2

i 2 . . . , ~8!

where the sums over thei ’s run from 0 to infinity in each
variable with at least two nonzero indices. In the followin
we use the notationi for ( i 1 ,i 2 , . . . ). It is implicit that there
are only a finite number of nonzero indices. Plugging t
expansion into Eq.~6!, and requiring that the one step a
vance is obtained by rescaling the scaling variables by t
associated eigenvalue, we obtain

sl ,i5
Nl ,i

S)
m

l (m)
i m 2l ( l )D . ~9!

with

Nl ,i5 (
j1k5 i

S D l
pqsp,jsq,k2sl ,j)

m
l (m)

j m 2D0
0psp,kD

2 (
j1k1r5 i

sl ,j)
m

l (m)
j m D0

pqsp,ksq,r . ~10!

For a given set of indicesi, we introduce the notation

Iq~ i!5(
m

i mmq. ~11!

One sees thatI0 is the degree of the associated monom
andI1 its order in the HT expansion~sinceyl is also of order
b l). Given that all the indices are positive and that at le
one index is not zero, one can see that ifj1k5 i then
1-2
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Iq( j ),Iq( i) andIq(k),Iq( i). Consequently, Eq.~10! pro-
vides a solution order by order inI0 or in I1 ~since the rhs is
always of lower order! assuming that the small denominat
problem can be avoided.

Using the parametrizationc52122/D, the zero denomina
tors in Eq.~9! appear when

D2 l ~D12!5DI02~D12!I1 . ~12!

If D and D12 have no common factors, this equation h
nontrivial solutions for indices such thatI05(21D)q11,
for q a strictly positive integer andl such thatI15Dq1 l .
Sincel is the index appearing in Eq.~8!, it is also a strictly
positive integer. IfD and D12 have common factors, w
can proceed in the same way but with these common fac
removed from bothD andD12.

We have investigated numerically the well-studied ca
D53 with a polynomial truncationl max525. We have first
considered the case wherehl depends only on the two lead
ing variablesy1 and y2. This restriction is self-consisten
since if we start for instance withy350, the multiplicative
renormalization of the scaling variables implies that this c
dition stays valid aftern iterations. Sincei 35 i 45 . . . 50,
we will use notations such assl ,i 1 ,i 2

or hl(y1 ,y2). In addi-
tion, we have concentrated our attention on the large o
behavior in the leading variabley1 and calculated the firs
order corrections in the subleading variabley2. If i 250, we
have the following sets of small denominators:i 155q11
and l 52q11. If i 251, we havei 155q and l 52q12. We
have calculated the numerators corresponding to these
denominators forq51, 2, 3, and 4.

We have checked our calculation of thehl with two dif-
ferent methods. First we have considered a configura
hn,l5hl(y1 ,y2) for particular values ofy1 and y2 and then
calculated the one step backward configurationhn21,l

5hl(l1
21y1 ,l2

21y2). We then calculated the one step fo
ward using thesehn21,l and the exact formula~6!. Compari-
son between the twohn,l for values ofy1 and y2 varying
between 0.1 and 0.001 and for various truncations in
power of y1 and y2 considered, showed errors scaling lik
the powers neglected with coefficients compatible with
order of magnitude of the coefficients involved in the expa
sion. Second, we used the expressiony1(hl) calculated in
Ref. @7# up to order 11 inb and checkedy1@hl(y1 ,y2)#
5y1 with errors ranging between 10214 and 10216 for the
various coefficients of the higher order terms.

In Fig. 1 we show the absolute value ofN3,j ,0 . The cal-
culations have been performed with different arithmetic p
cisions. We have usedMATHEMATICA 4.0 withMaxPrecision
and MinPrecisionboth set to the same numerical valueP,
which approximately represents the number of signific
digits in the calculation. We have considered the caseP
520, 30, and 40. The graphs showsN3,6,0 is more than 20
orders of magnitude smaller than its peers when the preci
P520 and then drops by ten orders of magnitude each t
the precision is increased by 10, while all the other valu
stay stable. This is a strong evidence forN3,6,050. Figure 1
does not provide the sign ofN3,j ,0 . Starting with j 53, the
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sign sequence is (2,1,2,0,2,1,2,1,2,1,1,2, . . . )
excluding the possibility that the zero occurs only when
sign changes.

In Fig. 2 , weshowNl ,i 1,0 calculated with a precisionP

520. One sees that theN2q11,5q11,0 are more than 20 order
of magnitude smaller than the naive interpolation. We ha
checked in each of these cases that the small value drop
ten orders of magnitude each time the precision is increa
just as in Fig. 1. Similar results were obtained for t
N2q12,5q,1 for q up to 4. In summary, for each zero denom
nator considered, we found a zero numerator. We thus c
jecture that all numerators corresponding to zero denom
tors are zero. If this conjecture is correct, thesl ,i
corresponding to nonzero denominators are calculable f
Eq. ~10! and those corresponding to zero denominators
undetermined. The calculations performed above have b
done with these coefficients treated as undetermined.
figures have been drawn with these coefficients set to z
This choice is not essential; we have considered ot
choices where the undetermined coefficients have been s
values of the same order as the coefficients above and b
~in i 1) and reached identical conclusions. This is a nontriv
statement. For instance, the undetermined coefficients3,6,0
appears explicitly in the numerator of the equation fors5,11,0;
however, it is multiplied by a very small number whic
drops when the precisionP is increased.

One may object that the mechanism might not work
more scaling variables are involved. We have thus conduc
a systematic study of all thehl up to order 12 in the high-

FIG. 1. Log10(uN3,j ,0u) vs j for various precisionsP.

FIG. 2. Log10(uNl , j ,0u) vs j for l 51, . . . 9.
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temperature expansion. The study involves the first 12 s
ing variables and 2568 linear equations with 32 zero deno
nators. In each of the 32 cases~including the four cases
already considered!, we found a clear indication for a zer
numerator as before.

We have checked that the individual terms in the z
numerators were not zero. The fact that we were able
obtain very precise cancellations without any fine-tun
suggests the existence of closed form formulas or of a s
metry forbidding these terms. More generally, the equa
spaced spectrum~on a log scale!, the number of terms at a
given levelm ~the order in HT expansion! equal to the num-
ber of partitions ofm @7#, and the existence of ‘‘nested’
ambiguities are somehow reminiscent of string theory.
possible starting point to discover these hypothetical sym
tries would be to exploit the fact that since, for instance,y3

andy1
6 transform the same way under a RG transformati

there exist ambiguities in the construction ofhl in terms of
the scaling variables.

We should say a few words about the small denomina
near other fixed points. The spectrum of the linearized
transformation near the nontrivial fixed point@11# can be
calculated numerically@16#. Investigating the small denomi
nators of the forml l

k.lm
r for the first 20 eigenvalues and fo

powers not larger than 100. The best solution we found w
l2

9.l4 with two parts in 1000. A more detailed study
necessary to decide if the rate of decay of the coefficient
sufficient to take care of the smaller denominator that w
appear at larger orders. On the other hand, the spectru
B

s
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the Gaussian fixed point@9# is l j52c2 j . There are many
zero denominators in integer dimensions, e.g.,l15l2

2 for
D53. If the numerators are not zero, one can ‘‘repair’’@1#
the situation by consideringn-dependent coefficients. Thi
excludes a solution of the form of Eq.~7! but it generates
logarithmic corrections that are necessary. These can eve
observed in the large order of the HT temperature expan
in Ref. @17#. Note that using a slightly different value ofD
might be an efficient way to deal with the small denomin
tors.

In conclusion, we have found remarkable cancellations
small denominators by small numerators. These cance
tions have been checked systematically up to order 12 in
high-temperature expansion and for the equations involv
only the leading scaling variable up to order 23. If the
cancellations occur in general, it is possible to calculate a
lytically the thermodynamical quantities of Dyson’s hiera
chical model in the HT phase using Eq.~10!. Our results
suggest that this model has features analogous to the
grable systems in Hamiltonian mechanics and that clo
form expressions for thehl could be found. As such, the
model would stand out as a first approximation to be use
situations where the conventional perturbative expansi
are not reliable.
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